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or
sﬁc——’+2=0 (439)
By trial and error and using the value of kKL that satisfies
Eq. (4.3.9) is found to be ==
kL= (VP/ENL =3.59 (4.3.10)
from which the critical load
EI
P.=129 e (4.3.11)

is obtained. This load is the same as before using the differential equation
approach.

4.3.2 Sway-Permitted Case

Referring to Fig. 4.8a, we see that the slope-deflection equations (3.8.1)
and (3.8.2) for the swayed column are

EI A
Map = Z' [SiiceA + 8ijcB — (Siic + Sijc) l—] =0 (4.3.12)
El A
Mpa = fc [siiceA + SicOB — (Siic + Sijc) Z'] (4.3.13)
Solving Eq. (4.3.12) for 6, and substituting 6, into Eq. (4.2.13), we
obtain
) EIC siz'c s%c A
Mpa= Z [(siic - ;i) 65 — (siic - i) l_c] (4.3.14)

Since the beam is bent in double curvature, we use the slope-deflection
equation (3.8.17) for the beam

El
Mgc = L—b (830 + Si) 0B (4.3.15)
b

Because there is no axial force in the beam, we set s;, = 4 and s;;, =2,
or

6El,

MBC = T GB (4.3.16)
b

From joint equilibrium (Fig. 4.8b), we know

MBA+MBC=0 (4.3.17)
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FIGURE 4.8 Slope-deflection equation approach for P, of sway buckling of
simple portal frame

Using Egs. (4.3.14) and (4.3.16), the joint equilibrium condition
(4.3.17) becomes

EL [ ( s%,-c) ( s§c> A ] 6EIL,
' iic — T 65 — e — 71— 6p=0 4.3.1
Lc Y iic B d Siic Lc L B ( 3 8)

or

She |  bLe ) ( leC) A
"c_—+ e — ie——— ) = 4.3.
(s,, 61 N s 2 0 (4.3.19)



252 Rigid Frames

From story shear equilibrium (Fig. 4.8¢c), we have

MAB+MBA+PA+MCD+MD(:+PA_

0 4.3.20
Realizing that
Mg =Mpc=0 (hinged) (4.3.21)
and
Mcp =My, (antisymmetry) (4.3.22)
we can write the story-shear equilibrium equation (4.3.20) as
‘+2PA
2Mpa +2PA =0 (4.3.23)
L.
or
P
—@;—A =0 (4.3.24)

Using Eq. (4.3.14) for Mg, in Eq. (4.3.24), we can write

EL 3 ) A, PA
L_Zc [(siic —%)OB - (siic _:,_]) _L_] + L =0 (4325)

or

(siic - im) 0 — (siic - ﬁ: - kiLi) A =0 (4.3.26)

iic iic Lc

Equations (4.3.19) and (4.3.26) are the two equilibrium equations of
the frame, they can be written in matrix form

s+ 62k - %\ 10
kL A= (0) 4.3.27
S -S+kL) \L (4.3.27)

where
2

S =S — She
Note that the coefficient matrix in Eq. (4.3.27) can be made symmetric
by multiplying Eq. (4.3.26) by minus one. If we do this, and also let

L,=I.=Iand L,=L.=L, Eq. (4.3.27) becomes

[S+6 ) ]

-S §—(KL) - (3) (4.3.28)

S~

At bifurcation, both 8z and A increase without bound. For Eq.
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(4.3.28) to be valid, we must set

S+6 -S

det| _s s—(kLypl™

0 (4.3.29)

Equation (4.3.29) is the characteristic equation of the frame. By trial
and error and by using Table 3.7, the value kL can be found to be

kL= (VP/EDL =1.35 (4.3.30)
from which the critical load can be solved
E

P.=1.82 L_ﬁ (4.3.31)

Note the correspondence of Eq. (4.3.31) obtained using the slope-
deflection method with Eq. (4.2.57) obtained previously using the
differential equation method.

The slope-deflection equation method, as in the differential equation
method, can in theory, be extended to evaluate P, for all types of
frames. The resulting coefficient matrix obtained by enforcing joint (and
story-shear) equilibrium will be an » X n matrix in which # is the number
of independent degrees of freedom of the frame. However, if n is large, it
is cumbersome to obtain a solution. In the next section, the slope-
deflection equation method will be generalized; the resulting formulation
we will see is called the matrix stiffness method.?? This procedure to
obtain solutions for large frames can be greatly enhanced by the use of
computers.

4.4 ELASTIC CRITICAL LOADS BY MATRIX STIFFNESS METHOD

In the matrix stiffness method, the element stiffness matrix that relates
the element end forces to end displacements is first formulated for each
and every member of the frame. These element stiffness matrices are
then assembled into the structure stiffness matrix that relates the
structure nodal force to the structure nodal displacements. At bifurca-
tion, the stiffness of the structure vanishes. Therefore, by setting the
determinant of the structure stiffness matrix to zero, the critical load of
the frame can be obtained.

4.4.1 Element Stiffness Formulation

We shall begin our discussion of the matrix stiffness method by
developing the element stiffness matrix from the slope-deflection equa-
tion. Figure 4.9a shows the sign convention for the positive directions of
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FIGURE 4.9 Element end forces and displacements notations

Rigid Frames

element end forces and end displacements of a frame member. The end
forces and end displacements used in the slope-deflection equation are
shown in Fig. 4.9b. By comparing the two figures, we can easily express

the following equilibrium and kinematic relationships.

Equilibrium

orfeu
Kinematic gh NW
(W)g:mu e =-{ds—d,)

(a9) g g ()

(4.4.1)
(4.4.2)

(4.4.3)
(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)
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Equations (4.4.1) to (4.4.6) can be written in matrix form as

{

Similarly, Eqs. (4.7) to (4.4.9) can be written in matrix form as

€
0a
Os

o

1

0

0 -1
1 0
0 0

255
P (4.4.10)
Mu
My
- d,
d,
d,
4.4.11
o] @
ds
A \dg

Equation (4.4.10) and Eq. (4.4.11) can be related by recognizing that

=-——

El
M, = T (5:64 +5,68)

El
Mg = 7 (5:0a +5,:65)

(4.4.12)
(4.4.13)

(4.4.14)

Equation (4.4.12) relates the axial force P to the axial displacement e

of the member, Eqgs. (4.4.13) and (4.4.14) are the slope-deflection
equations of the member, and s, 5;; are the stability functions. In writing
Eq. (4.4.12), it is tacitly assumed that the effect of member shortening
due to the bending curvature is negligible. This assumption is satisfactory
for most practical purposes.

Putting Egs. (4.4.12) to (4.4.14) in matrix form, we have

P ] i;— G 0 €

M, | =22 04 (4.4.15)
1 M, 0 Si 5y o F

e 0 Sij i ®

3
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Substituting Eq. (4.4.15) into Eq. (4.4.10), and then substituting Eq.
(4.4.11) into the resulting equation, we can relate the element end forces
(ry to rg) with the element end displacements (d; to dg) as

e

A A B

% 0 0 % 0 0
r 2(3u + ‘fil) - (’ﬁ + sii) o "‘2(3ﬁ + 5“) “"(-’5 + 3'") d}
ry L L L L d.
s} _EI i J S5ty s dy
n ] L L d,
:5 sym. {; 0 0 ?
Ly~ &

sy + 3, (S + 55
i L
- 4 55 770 ¢ fﬂ/ wa
Sti m'e(! medix @ 4
y (4.4.16)

Symbolically, Eq. (4.4.16) can be written as

kmq_b (}’/J/?’Z) (4.4.17

where the subscript ns is used here to indicate that there is no sidesway
in the member. If the member is permitted to sway as shown in Fig. 4.10,
an additional shear force equal to P A/L will be induced in the member
due to the swaying of the member by an amount A given by

ZS =d2““’d5 (4.4-18)

We can relate this additional shear force due to member sway to the
member end displacement as

0 0 00 0 07
n\ Loo £ ' C‘”/ewu?
L L
{'6/ef“’:‘>’ , = 0 2 2 g 7 (4.4.19)
Ly (i
w A sym. —-g 0
0

: b Lt Soeswn /ol
or symbolically cfiffnes rmeffix
r.=kd @AW
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where the subscript s is used to indicate the quantities due to sideswey of
the member.

By combining Eq. (4.4.17) and Eq. (4.4.20), we obtain the general
beam-column element force-displacement relationship as

r=kd (4.4.21)
where
(4.4.22a)

r=g.+r

i ‘

k=K, +k ¢ sffhes mefeet  (4.4.200)

5 o e
- o P L -2 0

2(s5 + 555) — @')2 (si+ sy) 0 ~2sy +5) + (KLY ~(s5 + ;)
L?' - T i

L L L
LI Sa+ s,
“T w0 T
A
' . o O
svm 7 0

Z(Jii 4 S;f) - (kL:_)z (ﬁ,‘, + Si”)
L? L
8y L

(4.4.23)

Substituting the expressions for the stability functions (s;,s;) in Eq.
(4.4.23) and simplifying, we obtain

A A 7]
-'I“ 0 0 ——I— ] 0
iz -6 -12 -6
2% T ¢. 0 Iz ¢, T b2
19, 0 24, 20
3 5 Y2 4
K= .‘%’ L (4.4.24)
A
7' 0 0 % ) é:o ?77‘(
: 6
sym. o }l:% o, i o /f/,LZ’Z ¥ | ff'/v/nejj
- 4(;)3 hef';)(

s =

The expressions for ¢;, ¢,, ¢;, and ¢, are given in Table 4.1. Note
that as P approaches zero, the functions ¢,, ¢,, ¢;, and ¢, become
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FIGURE 4.10 Additional shear due to swaying of the member

indefinite. However, by using the L'Hospital’s rule, it can be shown that
these functions will approach unity and Eq. (4.4.24) reduces to the
first-order (linear) element stiffness matrix for a frame member.

Also shown in Table 4.1 are the ¢, functions expressed in the form of a
power series by using the following series expansion for the trigonometric
functions:

For compression JWM (74
(kLY (kL)
sm@~ kL~ 5ot (4.4.252)
kL (kL)
=]~ - .4.25h
coskL =1 2 >4 e iants o (4.4.25h)

For tension

(KLY | (kLY

kL +-——
sinh kL = kL 3 130 (4.4.26a)
kL (kL)“
cosh kl =1+ — > 54 (4.4.26b)

It has been shown® that these power series expressions are convenient
and efficient to use in a computer-aided analysis because no numerical
difficuities will anise even if the axial force P is small. In addition, the
expressions in the series are the same regardless of whether P is tensile or
compressive. For most cases, the series will converge to a high degree of
accuracy if n = 10 is used.

If the axial force in the member is small, Eq. (4.4.24) can be simplified
by using a Taylor series expansion for the ¢.’s. If we retain only the first
two terms in the Taylor series, it can be shown that the resulting stiffness
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Table 4.1 Expressions for ¢,, ¢,, ¢, and ¢,

¢ P
Compressive Zero Tensile
¢ (KLY sinkL : (kLY sinh kL
N ‘ 129 129,
. B (KLY*(1 — coskL) . (kL)*{cosh kL — 1)
69, 64,
¢ {(kL)(sin kL — kL cos kL) 1 (kL)(kL. cosh kL —sinh kL)
? 44, 49,
¢ (KL)Y(kL ~sin kL) . (kL)(sinh kL — kL)
¢ 2¢. 2¢,
where
¢.=2~2cos kL — kL sinkL ¢, =2~ 2cosh kL + kL sinh kL

Alternatively, the ¢, functions can be expressed in the form of power series, as
in reference 4:

1

kLYY .
" =1+.§1(2n+1)f{$( )] ~/20wr SereS )} echaus, v
! 12¢ /
L G (2» Grrgy DT
$y= 60
1 2(” + l) 2y
RAs: L Gyt FOL)
3T 4¢
4+ E g FOT
i Pu= 2¢
where )
X o Un+1 2m
=t+ 3 oo FRLYT

Use the minus sign if the axial force is compressive.
Use the plus sign if the axial force is tensile.
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2 -6 0 :._:{.:_Z. :_.6.
L L I} L

6
4 0 - 2
L
A
— 0
1 0
)
L? L
4

KO mefix

b

L% mefric

matrix that is valid for @axial force is given by

6
5

00 0 6 0 o0
=L 0 -6 -L
10 5 10
2L’ 0 L -r
15 = 10 30

0 0 0
6 L (
5 10
217
o5 15
AY
MfaARE )

in which the negative sign preceding the second matrix corresponds to a
compressive axial force and the positive sign corresponds to a tensile
axial force.

Symbolically, Eq. (4.4.27) can be written as

kmko‘f‘kc;

(4.4.28)

where kg is the first-order (linear) elastic stiffness matrix and kg is the
geometric stiffness matrix (sometimes referred to as the initial stress
stiffness matrix), which accounts for the effect of the axial force P on the
bending stiffness of the member.

The following example will be used to demonstrate the procedure of

using the stiffness matrix method to obtain the critical load of frames.

4.4.2 Sway Buckling of a Pinned-Base Portal Frame

The matnx stiffness method is applied here to determine the critical load
P, for the frame shown in Fig. 4.5a. Because of symmetry, we consider
only one half of the structure in the analysis. This is shown in Fig. 4.11a
together with the structural nodal forces and displacements. To reduce
the number of degrees of freedom of the structure, we assume that all
members are inextensible (i.e., the change in length due to axijal force is
neglected). As a result, only four degrees of freedom, are labeled: three
rotational degrees of freedom, D,, D,, and D, and one translational
degree of freedom, D,. The corresponding structural nodal forces,

R, ...

,R,, are also shown in Fig. 4.11a. The directions of these

: ‘-’Z%%;e/yﬂw
L of iz,

et apny
w nuk L
Wy
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FIGURE 4.11 Structure
and displace-

member forces
ments notations
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and

rotations, translations, and forces are shown in their positive sense in the

figure.

Because of the assumption of inextensional behavior,

the axial

force-axial displacement relationship expressed in Eq. (4.4.12) is not
valid anymore. As a consequence, the 6 X6 element stiffness matrix
relating the element end forces to the element end displacements will be
reduced to a 4 X 4 matrix as

(12 6
1? L
4
sym.

12

T

(o]

ted e

P

B

(& AR

{sym.

L

10

2017

15
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This stiffness matrix relates the four end forces (r,, 13, r5, and rg) to the
four end displacements (d,, d3, ds, and dg) of an inextensible member.
Note that the element stiffness matrix for an inextensible member [Eq.
(4.4.29)] is obtained simply by deleting the first and fourth rows and the
first and fourth columns from the element stiffness matrix for an
extensible member [Eq. (4.4.27)].

Figure 4.11b shows the four degrees of freedom (d,, d,, ds, and d)
and the corresponding end forces (r,, 73, 75, and ry) associated with each
member of the structure. Again, the directions are shown in their positive
sense in the figure.

By using Eq. (4.4.29), the clement stiffness matrix for the column
(element 1) can be written as

12 -6 —-12 —6 6 —-L —6 —L7]
2 L L L 5 10 S 10
. 5, a Lo-u
k,=§-1- L _P 15 10 30 (4.4.30)
L Sym. —12, —6- L sym. -6- £
L2 L 5 10
) 2L
| _ B 15 |

and the element stiffness matrix for beam with P=0 and L/2 for L
(element 2) can be written as

48 ~12 —48 -127
LI* L L' L
12
k=22t ¢ T 2 (4.4.31)
8 12
N 4.

The structure stiffness matrix can be obtained by assembling these
element stiffness matrices. The process of assemblage is described in
detail in most matrix structural analysis textbooks.”” So we will discuss it
only very briefly here.

For each element, the eclement end displacements are first related to
the structure nodal displacements by consideration of joint compatibility.
It can easily be seen from Fig. 4.11 that for element 1, this kinematic
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relationship is Coc qum éwk we .

'/d,/-/g()()l D,
&\ |01 00|[D} i
i ] 1o o0 oll|np (4.4.32)

dg/ 1 0 0 0.:\D,4
(4.4.33)

Symbolically, Egs. (4.4.32) and (4.4. SCiécan be written resbecnveiy as

6@9 s mEYPX (4.4.34)

D (4.4.35)
P L

On the other hand, the portion of the:structure nodal forqes resisted by
element 1 is

R, 000 17/n

Rz _ 0 1 0 0 3

R} oo o0 ollr (4.4.36)

Ry |1 00 0f\r/i  \freuyporesem
!

and the portion of the structural nodal force resisted by glement 2 is

R,
R,
R;
R,/ 2

i

(4.4.37)

By comparing Eq. (4.4.36) with Eq. (4.4.32) and Eq. (4.4.37) with Eq.
(4.4.33), it can be seen that the matrix relating the structure nodal forces
R’s to the element end forces r's is the transposition of the matrix relating
the element end displacements d’s to the structure nodal displacements
D’s. This observation is not a coincidence, but represents a theory in
structural analysis known as the contragradient law.”

s
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In view of the above observation, Egs. (4.4.36) and (4.4.37) can be
written symbolically as

R, =Tjr, (4.4.38)
Rz = '!gr; (44.39)

From consideration of joint equilibrium, we can write
R=R;+R, (4.4.40)

Substituting the member equilibrium relationships Eqgs. (4.4.38) and
(4.4.39) into Eq. (4.4.40) gives

R=TTr, + 10, (4.4.41)

Since, from Eq. (4.4.21) the element force-displacement relationship
for elements 1 and 2 can be written, respectively, as

= k]dl (44.42)
and

r = kod, (4.4.43)
we can write Eq. (4.4.41) as
R =Tk, + Trk.d, (4.4.44)

Now, using the member kinematic relationships, Egs. (4.4.34) and
(4.4.35), we can write Eq. (4.4.44) as

R= T;rleJ) “+ T;szzD

= (T7k, T, + T2k, T,)D (4.4.45)
or
R=KD (4.4.46)
where 5% s , - —
‘ K=TIT+TT, [ Gfol ] @aan)
is the structure stiffness matrix. - -t % (ﬁM—' ¢ L

The process shown above is referred to as assemblage and it involves
the process of transforming and putting together element stiffness
matrices to form the structure stiffness matrix. In general, if these are n
elements in the structure, the structure stiffness matrix can be obtained as

(4.4.48)

Now, referring back to the example problem, upon substituting the
matrices T,, T,, k;, k, into the structure stiffness matrix Eq. (4.4.47) and
carrying out the matrix products, we see that the structure stiffiness matrix
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can be written as

— ["ay2 g2 -1
4 2 0 =8 L L, L
L 15 30 10
—~6 2L7 —~
gl 1242 p 2L oo ZE
K=— L {--— 15 10 (4.4.49)
L L
8 0 0 0
sym 1 6
A ym. | usym. 5
Denoting
PL? (kL)
T el A,
30EI 30 (4.4.50)
Eq. (4.4.49) can be written as
powe: — + —
4—41 242 o F
~6+ 34
El 12-44 4 6+
K= T L (4.4.51)
8 0
12— 364
sym. B

At bifurcation, the determinant of the stiffness matrix rnust vanish.
Thus, by setting

det [K|=0 (4.4.52)

we obtain a polynomial in A. The smallest root satisfying this equation is
A =0.061, and from Eq. (4.4.50)

Pc,x30lg= 1.83% (4.4.53)
The slight discrepancy of Eq. (4.4.53) compared to the value obtained
previously by the differential equation method or the slope-deflection
equation method is due to the round-off -error, and this error was
introduced earlier as a result of the approximation from Eq. (4.4.24) to0
Eq. (4.4.27).
At first glance, it seems that there is much more work involved in the
stiffness matrix approach than that of the differential equation or the
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slope-deflection equation approaches. However, it should be noted that

the steps shown above can easily be programmed in a digital computer,
and so 7., can be obtained quite conveniently for any type of frame.

4.5 SECOND-ORDER ELASTIC ANALYSIS

In the preceding sections, we determined the load that corresponds to a
siate of bifurcation of equilibrium of a perfect frame by an eigenvalue
analysis. In an eigenvalue analysis, the system is assumed to be perfect.
There will be no lateral deflections in the members until the load reaches
the critical load F,,. At the critical load P, the original configuration of
the frame ceases to be stable and with a shight disturbance, the lateral
deflections of the members begin to increase without bound as indicated
by curve 1 in Fig. 4.2. However, if the system is pot perfect, lateral
defiections will occur as soon as the load is applied, as shown by curve 2
in Fig. 42. For an elastic frame, curve 2 will approach curve 1
asymptotically. To trace this curve, a complete load-deflection analysis of
the frame is necessary. A second-order elastic analysis will generate just
such load-deflection response of the frame.

In a second-order analysis, such secondary effects as the P — & and
P — A effects, which we discussed previously in Chapter 3, can be
incorporated directly into the analysis procedure. As a result, the use of
P — & and P — A moment magnification factors (denoted as B, and B, in
Chapter 3) are not necessary. :

Because for a second-order analysis the equilibrium equations are
formulated with respect to the deformed geometry of the structure, which
is not known in advance and is constantly changing with the applied
loads, it is necessary to employ an iterative technique to obtain solutions.
In a numerical implementation, one of the most popular solution
techniques is the incremental load approach. In this approach, the
applied load is divided into increments and applied incrementally to the
structure. The deformed configurations of the structure at the end of each
cycle of calculation is used as the basis for the formulation of equilibrium
equations for the next cycle. At a particular cycle of calculation, the
structure is assumed to behave linearly. In effect, the nonlinear response
of the structure as a result of geometric changes is approximated by a
series of linear analyses, the geometry of the structure used in the
analysis for a specific cycle is the deformed geometry of the structure
corresponding to the previous cycle of calculation. Because of the
linearization process, equilibrium may be violated and the external force
may not always balance the internal force. This unbalanced force must be
reapplied to the structure and the process repeated until equilibrium is
satisfied. : ,

For a second-order elastic frame analysis, the iteration process is
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